Data Analytics for Smart Parking Applications

نویسندگان

  • Nicola Piovesan
  • Leo Turi
  • Enrico Toigo
  • Borja Martínez
  • Michele Rossi
چکیده

We consider real-life smart parking systems where parking lot occupancy data are collected from field sensor devices and sent to backend servers for further processing and usage for applications. Our objective is to make these data useful to end users, such as parking managers, and, ultimately, to citizens. To this end, we concoct and validate an automated classification algorithm having two objectives: (1) outlier detection: to detect sensors with anomalous behavioral patterns, i.e., outliers; and (2) clustering: to group the parking sensors exhibiting similar patterns into distinct clusters. We first analyze the statistics of real parking data, obtaining suitable simulation models for parking traces. We then consider a simple classification algorithm based on the empirical complementary distribution function of occupancy times and show its limitations. Hence, we design a more sophisticated algorithm exploiting unsupervised learning techniques (self-organizing maps). These are tuned following a supervised approach using our trace generator and are compared against other clustering schemes, namely expectation maximization, k-means clustering and DBSCAN, considering six months of data from a real sensor deployment. Our approach is found to be superior in terms of classification accuracy, while also being capable of identifying all of the outliers in the dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Big Data Analytics in Power Distribution Network

Smart grid enhances optimization in generation, distribution and consumption of the electricity by integrating information and communication technologies into the grid. Today, utilities are moving towards smart grid applications, most common one being deployment of smart meters in advanced metering infrastructure, and the first technical challenge they face is the huge volume of data generated ...

متن کامل

Big Data Management and Analytics for Mobile Crowd Sensing

With the fast increasing popularity of mobile smart devices, mobile crowd sensing has become a new paradigm of applications that enables the ubiquitous mobile devices with enhanced sensing capabilities, such as smartphones and wearable devices, to collect and to share local information towards a common goal. Most of the smart devices are equipped with a rich set of cheap and powerful sensors, f...

متن کامل

Cloud and IoT based Smart Car Parking System by using Mamdani Fuzzy Inference System (MFIS)

Internet of Things (IoT) and cloud computing technologies have connected the infrastructure of the city to make the context-aware and more intelligent city for utility its major resources. These technologies have much potential to solve thechallenges of urban areas around the globe to facilitate the citizens. A framework model that enables the integration of sensor’s data and analysis of ...

متن کامل

Smart City Technologies: Design and Evaluation of an Intelligent Driving Assistant for Smart Parking

Smart cities technologies are gradually changing our urban landscape thanks to the proliferation of billions of smart devices permanently connected through the internet. Among technologies with the highest impact on citizen’s quality of life are intelligent transportation systems and in particular, smart parking applications. In this paper, we present a study evaluation the design of a smart pa...

متن کامل

A Social-Aware Smart Parking Application

The problem of finding parking spaces in big urban areas is one of the unsolved challenges of Smart Cities causing traffic congestion, increased carbon emission and time wasting. Network and sensor technologies available today allow to foresee Smart Cities equipped with applications able to provide real-time information on parking space availability, which can be used to assist motorists in loo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016